## Network Data

## Structures

## Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How can we represent networks using graphs and graph notation?
* How can we represent undirected and directed networks using matrices?



## Here is a problem for

 you...

# Konigsberg Bridge Problem 

Devise a route in which you could cross all seven bridges.


## Konigsberg Bridge Problem

Devise a route in which you could cross all seven bridges, but crossing each of the seven bridges only once.

## Konigsberg Bridge Problem

* Leonard Euler worked on this problem in the mid 18th century, eventually representing the solution with a set of points and lines.
* See: https://www.youtube.com/watch? $\underline{v=n Z w S o 4 v f w 6 c}$
* Graph theory provides a foundation for operationalizing concepts of interest among network scientists.


## Graph Notation

* Definition of a graph: $G=(N, L)$
* Node/Vertex set: $N=\left\{n_{1}, n_{2} \ldots, n_{g}\right\}$
* Line/Edge set: $L=\left\{l_{1}, l_{2} \ldots, l_{L}\right\}$
* There are $N$ nodes/vertices and $L$ lines/edges in a graph.


## Graph Notation

* Two nodes, $n_{i}$ and $n_{j}$ are adjacent if the line $l_{k}=\left(n_{i}, n_{j}\right)$
* What this means is that in the graph, there exists a line between nodes $i$ and $j$.


## Example: Undirected, Binary Network

In an undirected graph, the order of the nodes does not matter.

In other words,

$$
l_{k}=\left(n_{i}, n_{j}\right)=\left(n_{j}, n_{i}\right)
$$



## Example: Directed, Binary Network

In a directed graph, the order of the nodes does matter.

$$
l_{k 1}=\left(n_{i}, n_{j}\right) \neq\left(n_{j}, n_{i}\right)=l_{k 2}
$$



## Sociometric Notation

* For a set of relations, $\boldsymbol{X}$, we can define a matrix which represents these relations.
* We commonly use an adjacency matrix, where each node/vertex is listed on the row and the column.
* The $i_{\text {th }}$ row and the $j_{t h}$ column $X_{i j}$ records the value of a tie from $i$ to $j$.
* In this approach, $\boldsymbol{X}$, can be thought of as a variable.
* The presence or absence of values in the cells represent variation.


## Sociometric Notation

## * Definitions

* Scalar: a single number
* Column vector: a column of numbers
- Row vector: a row of numbers
* Matrix: a rectangular array of numbers
* Order: number of rows and columns defining the matrix
* Square matrix: number of rows and columns of matrix are equal


## Example: Undirected, Binary Network



## Example: Undirected, Binary Network

|  | Jen | Tom Bob | Leaf | Jim |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jen |  |  |  |  |  |
| Tom |  |  |  |  |  |
| Bob |  |  |  |  |  |
| Leaf |  |  |  |  |  |
| Jim |  |  |  |  |  |

Graph or Sociogram
Adjacency Matrix or Sociomatrix

## Example: Undirected, Binary Network



We don't allow (in the simple case) selfnominations, so the diagonal is undefined.


## Example: Undirected, Binary Network



In the first row, $i$ sends to the second row only: $X_{12}=1 ; X_{15}=0$


## Example: Undirected, Binary Network



Since this is undirected, it is symmetric about the diagonal.
This means that the $i$ th column is the transposition of the $i$ th row.


## Example: Undirected, Binary Network



What does the rest of the matrix look like?


## Example: Undirected, Binary Network



It looks like this.

|  | Jen | Tom | Bob | Leaf | Jim |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen |  | 1 | 0 | 0 | 0 |
| Tom | 1 |  | 1 | 0 | 0 |
| Bob | 0 | 1 |  | 1 | 1 |
| Leaf | 0 | 0 | 1 |  | 1 |
| Jim | 0 | 0 | 1 | 1 |  |

## Example: Undirected, Binary Network



It looks like this.

|  | Jen | Tom Bob | Leaf | Jim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 1 | 0 | 1 | 0 | 0 |
| Bob | 0 | 1 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

Let's add zeros to the diagonals. (will explain this later...)

## Example: Undirected, Binary Network



The highlighted section here is called the lower triangle of the matrix.

|  | Jen | Tom | Bob | Leaf | Jim |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 1 | 0 | 1 | 0 | 0 |
| Bob | 0 | 1 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

The sum of the lower triangle should equal the number of edges in the graph.

## Example: Undirected, Binary Network



The other highlighted section here is called the upper triangle of the matrix.

|  | Jen | Tom Beb | Leaf | Jim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 1 | 0 | 1 | 0 | 0 |
| Bob | 0 | 1 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

The sum of the upper triangle should also equal the number of edges in the graph.

## Example: Undirected, Binary Network



Alternatively, we could sum all the elements and divide by 2.

|  | Jen | Tom Bob | Leaf | Jim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 1 | 0 | 1 | 0 | 0 |
| Bob | 0 | 1 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

## Example: Directed, Binary Network



What's different about a directed network?

|  | Jen | Tom Bob | Leaf | Jim |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jen |  |  |  |  |  |
| Tom |  |  |  |  |  |
| Bob |  |  |  |  |  |
| Leaf |  |  |  |  |  |
| Jim |  |  |  |  |  |

## Example: Directed, Binary Network



In the first row, $i$ sends to the second row:

$$
X_{12}=1
$$

|  | Jen | Tom Bob | Leaf | Jim |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Jen |  | 1 |  |  |  |
| Tom |  |  |  |  |  |
| Bob |  |  |  |  |  |
| Leaf |  |  |  |  |  |
| Jim |  |  |  |  |  |
| S. |  |  |  |  |  |

## Example: Directed, Binary Network



But in the second row, $j$ does not send:

$$
X_{21}=0
$$

|  | Jen | Tom | Bob Leaf | Jim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen |  | 1 |  |  |  |
| Tom | 0 |  |  |  |  |
| Bob |  |  |  |  |  |
| Leaf |  |  |  |  |  |
| Jim |  |  |  |  |  |

## Example: Directed, Binary Network



The Jen/Tom dyad is asymmetric. So, directed graphs permit asymmetry.


## Example: Directed, Binary Network



What about the Leaf/Bob dyad? Is it asymmetric or is it symmetric?


## Example: Directed, Binary Network



What does the rest of the matrix look like?


## Example: Directed, Binary Network



It looks like this.

|  | Jen | Tom | Bob | Leaf | Jim |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 0 | 0 | 1 | 0 | 0 |
| Bob | 0 | 0 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

Let's add zeros to the diagonals. (will explain this later...)

## Example: Directed, Binary Network



Note that, because we are allowing directionality to matter, the total number of edges in the network is just the sum of the entire matrix.

|  | Jen | Tom Bob | Leaf | Jim |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jen | 0 | 1 | 0 | 0 | 0 |
| Tom | 0 | 0 | 1 | 0 | 0 |
| Bob | 0 | 0 | 0 | 1 | 1 |
| Leaf | 0 | 0 | 1 | 0 | 1 |
| Jim | 0 | 0 | 1 | 1 | 0 |

## Edgelists

* Very large networks are sometimes represented with an edgelist.
* An edgelist lists the edges in a graph with the head of the edge in the first column and the tail of the edge in the second column.
* Note: isolates (nodes without incident edges) are excluded from edgelists.


## Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How can we represent networks using graphs and graph notation?
* How can we represent undirected and directed networks using matrices?


## Questions?

