
Statistical Analysis of Networks

Bipartite Graphs/
Two-Mode Networks



❖ Questions: 

❖ How do police officers “frame” body-worn cameras?

❖ Is the meaning officers attribute to cameras created and 
transmitted in groups?

Motivating Example

https://journals.sagepub.com/doi/10.1177/1043986214553380


Empirical Example





Findings: 
Officers views of 
cameras changed 

based on who 
they interacted 

with through the 
network



What is the 
concept of 
interest?

How is it 
conceptualized?

How is it 
operationalized?



Learning Goals

❖ At the end of the lecture, you should be able to answer 
these questions:

❖ How are bipartite graphs different from unipartite 
graphs?

❖ What are some structural properties of bipartite 
graphs that we can examine?



Introduction

❖ So far, we have examined graphs that are:

❖ Unipartite (i.e. one partition of the node set).

❖ We want to look at graph structures that:

❖ Have multiple partitions of node sets (i.e. n-mode).



Two-Mode Networks
❖ Data are structured such that nodes come from two 

separate classes.

❖ Examples:

❖ Members of various groups, authors of papers, 
students in courses, participants in an event.

❖ A very different way of conceptualizing and 
operationalizing social structure.



Bipartite Graphs

❖ Two-mode data can be represented by bipartite graphs:

❖ A graph, such that there are two partitions of nodes 
(called modes), and edges only occur between these 
partitions (i.e. not within).



Graph Notation
❖ Definition of a bipartite graph: G = (N, M, L)

❖ Node/Vertex set: N = {n1, n2…,ng}

❖ Node/Vertex set: M = {m1, m2…,mg}

❖ Line/Edge set: L = {l1, l2…,lL}

❖ There are N nodes/vertices in the first set and M 
nodes/vertices in the second set.

❖ There are L lines/edges in the graph.



Bipartite Graphs

1 2 3

A BFirst Mode (N)

Second Mode (M) 4 5

C D E F



Sociometric Notation

❖ We can continue to use an adjacency matrix, to represent 
relations where each node/vertex is listed on the row 
and the column.



Bipartite Graphs

1 2 3

A BFirst Mode (N)

Second Mode (M) 4 5

C D E F

1 2 3 4 5
A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1



Adjacency Matrix

1 2 3 4 5

A 1 1 0 0 0

B 1 0 0 0 0

C 1 1 0 0 0

D 0 1 1 1 1

E 0 0 1 0 0

F 0 0 1 0 1

Second Mode (M)

First Mode 
(N)

The order of the matrix is NxM. It is rectangular.



Bipartite Graphs

1 2 3

A B

Each column 
corresponds to 

the edges incident 
on a node, Mi, 
from the set M.

4 5

C D E F

1 2 3 4 5
A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

M usually 
corresponds to 

the event, group, 
etc.



Bipartite Graphs

1 2 3

A B

Each row 
corresponds to 

the edges incident 
on a node, Ni, 
from the set N.

4 5

C D E F

1 2 3 4 5
A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

N usually 
corresponds to 

the person.



Examining Bipartite Graphs

❖ There are several approaches to examining bipartite 
graphs:

❖ Keep the graph bipartite and examine the properties.

❖ Project the graph to one mode (either N or M) and 
examine the properties (we will do this next week).



Bipartite Graph Properties
❖ As with unipartite graphs or one-mode networks, we 

can examine various properties of the data to tell us 
about the structure of the object.

❖ Examples:

❖ How dense is the graph? (Density)

❖ How are the edges distributed over nodes? (Degree 
Centrality)

❖ How “clustered” are the data? (Dyadic clustering)



Density: Bipartite Graphs
❖ The density of a two-mode network is the number of 

edges observed L, divided by the number of possible 
pairwise relations between the vertex sets. 

❖ The number of possible connections between the 
vertices is N x M.

❖ So, the density is:

L
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Example

1 2 3

A B

What is the 
density of this 

network?

4 5

C D E F



Example

1 2 3

A B

What is the 
density of this 

network?

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

First, calculate the 
number of edges.

Then, calculate N 
x M 



Example

1 2 3

A B

What is the 
density of this 

network?

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

L
N × M

=
12

6 × 5
=

12
30

= 0.4



Example

1 2 3

A B

What does a 
density of 0.4 

mean?

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1



Degree Centrality: Bipartite Graphs

❖ For a bipartite graph there are two degree distributions:

❖ The distribution of ties in the first mode (N).

❖ The distribution of ties in the second mode (M).

❖ The row sum for the adjacency matrix gives the 
degree centrality scores for the first mode, N.

❖ The column sum for the adjacency matrix gives the 
degree centrality scores for the second mode, M.



Example

1 2 3

A B

What are the 
degree 

centrality scores 
for each vertex 

set in this 
example?

4 5

C D E F



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

What are the 
degree 

centrality scores 
for each vertex 

set in this 
example?

First, get the row 
sums.



Example

1 2 3

A B

4 5

C D E F

What are the 
degree 

centrality scores 
for each vertex 

set in this 
example?

Second, get the 
column sums.

M
1 2 3 4 5

N

A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

3 3 3 1 2



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

3 3 3 1 2



❖ Degree centrality scores for each node/vertex set not 
only reflects each node’s connectivity to nodes in the 
other set, but also depend on the size of that set. 

❖ Larger networks will have a higher maximum 
possible degree centrality value.

❖ Solution?

Degree Centrality: Bipartite Graphs



❖ Standardize!

❖ We can account for differences across networks by 
dividing each degree centrality score by the number 
of nodes/vertices in the opposite set.

❖ For N, we divide by M.

❖ For M, we divide by N.

Standardized Degree Centrality: Bipartite Graphs



Example

1 2 3

A B

What are the 
standardized 

degree 
centrality scores 
for each vertex 

set in this 
example?

4 5

C D E F



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5 Raw Stand.

N

A 1 1 0 0 0 2 0.4
B 1 0 0 0 0 1 0.2
C 1 1 0 0 0 2 0.4
D 0 1 1 1 1 4 0.8
E 0 0 1 0 0 1 0.2
F 0 0 1 0 1 2 0.4

Divide the row 
sums by M (i.e. 5).



Example

1 2 3

A B

4 5

C D E F

Second, divide the 
column sums by 

N (i.e. 6).

M
1 2 3 4 5

N

A 1 1 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 0 1 1 1 1
E 0 0 1 0 0
F 0 0 1 0 1

Raw 3 3 3 1 2
Stand 0.5 0.5 0.5 0.167 0.334



❖ As before, we could examine the central tendency by 
examining the mean degree for each node/vertex set.

❖ For N, we divide by L/N.

❖ For M, we divide by L/M.

❖ Note: for the mean we use the number of nodes in 
the corresponding vertex set, for standardizing we 
use the opposite vertex set.

Mean Degree Centrality: Bipartite Graphs



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

3 3 3 1 2

What is the 
mean degree 

centrality score 
for each vertex 

set in this 
example?



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

3 3 3 1 2

What is the 
mean degree 

centrality score 
for each vertex 

set in this 
example?

For N, it is 12/6 = 2



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

3 3 3 1 2

What is the 
mean degree 

centrality score 
for each vertex 

set in this 
example?

For N, it is 12/6 = 2

For M, it is 12/5 = 2.4



Example

1 2 3

A B

4 5

C D E F

M
1 2 3 4 5

N

A 1 1 0 0 0 2
B 1 0 0 0 0 1
C 1 1 0 0 0 2
D 0 1 1 1 1 4
E 0 0 1 0 0 1
F 0 0 1 0 1 2

3 3 3 1 2

What does the 
difference 

between the 
means tell us?

For N, it is 12/6 = 2

For M, it is 12/5 = 2.4



❖ The density tells us about the overall level of ties 
between the node/vertex sets in the graph.

❖ Degree centrality tells us about how many edges are 
incident on a node in each node/vertex set.

❖ What about the overlap in ties?

❖ In other words, do nodes in N tend to “share” nodes 
in M?

❖ This is the notion of clustering in a graph. 

Dyadic Clustering: Bipartite Graphs



❖ In a bipartite graph, there are two interesting structures:

❖ 3-paths (sometimes called L3) and cycles (sometimes 
called C4). 

Dyadic Clustering: Bipartite Graphs



❖ In a bipartite graph, there are two interesting structures:

❖ 3-paths (sometimes called L3) and cycles (sometimes 
called C4). 

Dyadic Clustering: Bipartite Graphs

1 2

A B

3-path

1-A-2-B



❖ In a bipartite graph, there are two interesting structures:

❖ 3-paths (sometimes called L3) and cycles (sometimes 
called C4). 

Dyadic Clustering: Bipartite Graphs

1 2

A B

cycle

1-A-2-B-1



❖ In a bipartite graph, there are two interesting structures:

❖ 3-paths (sometimes called L3) and cycles (sometimes 
called C4). 

Dyadic Clustering: Bipartite Graphs

1 2

A B

3-path

1 2

A B

cycle



❖ Cycles in a graph create multiple ties between vertices 
in both modes.

Dyadic Clustering: Bipartite Graphs

1 2

A B

A and B 
are both 
linked 

through 
1 and 2



❖ Cycles in a graph create multiple ties between vertices 
in both modes.

Dyadic Clustering: Bipartite Graphs

1 2

A B

A and B 
are both 
linked 

through 
1 and 2

1 and 2 
are both 
linked 

through 
A and B



❖ The ratio of cycles to 3-paths in a graph is proportional 
to the level of dyadic clustering (sometimes called 
reinforcement).

❖ A value of 1 indicates that every 3-path is closed (i.e., 
is embedded in a cycle).

❖ Networks with values at or close to 1 will have 
considerable redundancy in ties.

Dyadic Clustering: Bipartite Graphs



❖ Specifically, the dyadic clustering coefficient is the ratio 
of cycles X 4, divided by the number of 3-paths.

Dyadic Clustering: Bipartite Graphs

4⇥ C4

L3
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❖ In a cycle, there are four 3-paths.

Dyadic Clustering: Bipartite Graphs

1 2

A B



❖ In a cycle, there are four 3-paths.

Dyadic Clustering: Bipartite Graphs

1 2

A B

A-1-B-2
2-B-1-A

1 2

A B



❖ In a cycle, there are four 3-paths.

Dyadic Clustering: Bipartite Graphs

1 2

A B

1 2

A B

A-1-B-2
2-B-1-A

1-A-2-B
B-2-A-1

1 2

A B



Example

1 2 3

A B

What is the 
dyadic 

clustering for 
this graph?

4 5

C D E F



Example

1 2 3

A B

What is the 
dyadic 

clustering for 
this graph?

4 5

C D E F

0.307



Example

1 2 3

A B

What is the 
dyadic 

clustering for 
this graph?

4 5

C D E F

0.307

What does a 
value of 0.307 

mean?



Learning Goals

❖ At the end of the lecture, you should be able to answer 
these questions:

❖ How are bipartite graphs different from unipartite 
graphs?

❖ What are some structural properties of bipartite 
graphs that we can examine?



Questions?


