Bipartite Graphs/ Two-Mode Networks

Motivating Example

 Joumal of Contemporary Criminal Justice
 > Diffusion of Ideas and> Technology: The Role of Networks in Influencing the Endorsement and Use of On-Officer Video Cameras
 \title{
Diffusion of Ideas and
 \title{
Diffusion of Ideas and

 Technology: The Role

 Technology: The Role of Networks in Influencing of Networks in Influencing the Endorsement and Use the Endorsement and Use of On-Officer Video Cameras
} of On-Officer Video Cameras
}

Jacob T. N. Young' and Justin T. Ready'

* Questions:
* How do police officers "frame" body-worn cameras?
* Is the meaning officers attribute to cameras created and transmitted in groups?

Empirical Example

Figure I. Diffusion of pragmatic legitimacy frame and compliance.

Bipartite Graph of Incidents and Officers by Treatment or Control Condition

Red/Square=Treatment Condition
Green/Triangle=Control Condition

Findings:

Officers views of cameras changed based on who they interacted with through the network

What is the concept of interest?
 How is it conceptualized?

How is it operationalized?

Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How are bipartite graphs different from unipartite graphs?
- What are some structural properties of bipartite graphs that we can examine?

Introduction

* So far, we have examined graphs that are:
* Unipartite (i.e. one partition of the node set).
* We want to look at graph structures that:
* Have multiple partitions of node sets (i.e. n-mode).

Two-Mode Networks

* Data are structured such that nodes come from two separate classes.
* Examples:
* Members of various groups, authors of papers, students in courses, participants in an event.
* A very different way of conceptualizing and operationalizing social structure.

Bipartite Graphs

* Two-mode data can be represented by bipartite graphs:
* A graph, such that there are two partitions of nodes (called modes), and edges only occur between these partitions (i.e. not within).

Graph Notation

* Definition of a bipartite graph: $G=(N, M, L)$
* Node/Vertex set: $N=\left\{n_{1}, n_{2} \ldots, n_{g}\right\}$
* Node/Vertex set: $M=\left\{m_{1}, m_{2} \ldots, m_{g}\right\}$
* Line/Edge set: $L=\left\{l_{1}, l_{2} \ldots, l_{L}\right\}$
* There are N nodes / vertices in the first set and M nodes/vertices in the second set.
* There are L lines/edges in the graph.

Bipartite Graphs

Sociometric Notation

* We can continue to use an adjacency matrix, to represent relations where each node/ vertex is listed on the row and the column.

Bipartite Graphs

Adjacency Matrix

Second Mode (M)

First Mode (N)

	1	2	3	4	5
A	1	1	0	0	0
B	1	0	0	0	0
C	1	1	0	0	0
D	0	1	1	1	1
E	0	0	1	0	0
F	0	0	1	0	1

The order of the matrix is $N x M$. It is rectangular.

Bipartite Graphs

Each column corresponds to

 the edges incident on a node, M_{i}, from the set M.
M usually

 corresponds to the event, group, etc.
Bipartite Graphs

Each row corresponds to the edges incident on a node, N_{i}, from the set N.
N usually
corresponds to the person.

Examining Bipartite Graphs

* There are several approaches to examining bipartite graphs:
* Keep the graph bipartite and examine the properties.
* Project the graph to one mode (either N or M) and examine the properties (we will do this next week).

Bipartite Graph Properties

* As with unipartite graphs or one-mode networks, we can examine various properties of the data to tell us about the structure of the object.
* Examples:
* How dense is the graph? (Density)
* How are the edges distributed over nodes? (Degree Centrality)
*How "clustered" are the data? (Dyadic clustering)

Density: Bipartite Graphs

* The density of a two-mode network is the number of edges observed L, divided by the number of possible pairwise relations between the vertex sets.
* The number of possible connections between the vertices is $N \times M$.
* So, the density is:

$$
\frac{L}{N \times M}
$$

Example

> What is the density of this network?

Example

What is the density of this network?

First, calculate the number of edges.

Then, calculate N

$$
x M
$$

		M					
		1	2	3	4	5	
$\boldsymbol{*} N$	A	1	1	0	0	0	
	B	1	0	0	0	0	
	C	1	1	0	0	0	
	D	0	1	1	1	1	
	E	0	0	1	0	0	
	F	0	0	1	0	1	

Example

What is the density of this network?

$$
\frac{L}{N \times M}=\frac{12}{6 \times 5}=\frac{12}{30}=0.4
$$

		M				
		1	2	3	4	5
N	A	1	1	0	0	0
	B	1	0	0	0	0
	C	1	1	0	0	0
	D	0	1	1	1	1
	E	0	0	1	0	0
	F	0	0	1	0	1

Example

What does a density of 0.4 mean?

Degree Centrality: Bipartite Graphs

* For a bipartite graph there are two degree distributions:
* The distribution of ties in the first mode (N).
* The distribution of ties in the second mode (M).
* The row sum for the adjacency matrix gives the degree centrality scores for the first mode, N.
- The column sum for the adjacency matrix gives the degree centrality scores for the second mode, M.

Example

What are the degree centrality scores for each vertex set in this example?

Example

What are the degree
centrality scores for each vertex set in this example?

First, get the row sums.

Example

What are the degree centrality scores for each vertex set in this example?

Second, get the column sums.

Example

Degree Centrality: Bipartite Graphs

* Degree centrality scores for each node / vertex set not only reflects each node's connectivity to nodes in the other set, but also depend on the size of that set.
* Larger networks will have a higher maximum possible degree centrality value.
* Solution?

Standardized Degree Centrality: Bipartite Graphs

* Standardize!
* We can account for differences across networks by dividing each degree centrality score by the number of nodes / vertices in the opposite set.
* For N, we divide by M.
* For M, we divide by N.

Example

What are the standardized degree centrality scores for each vertex set in this example?

Example

Example

Second, divide the column sums by N (i.e. 6).

Mean Degree Centrality: Bipartite Graphs

* As before, we could examine the central tendency by examining the mean degree for each node/vertex set.
* For N, we divide by L / N.
* For M, we divide by L / M.
* Note: for the mean we use the number of nodes in the corresponding vertex set, for standardizing we use the opposite vertex set.

Example

What is the mean degree centrality score for each vertex set in this example?

Example

What is the mean degree centrality score for each vertex set in this example?

For N, it is $12 / 6=2$

Example

What is the mean degree centrality score for each vertex set in this example?

For N, it is $12 / 6=2$

For M, it is $12 / 5=2.4$

Example

What does the difference
between the means tell us?

For N, it is $12 / 6=2$

For M, it is $12 / 5=2.4$

Dyadic Clustering: Bipartite Graphs

* The density tells us about the overall level of ties between the node/vertex sets in the graph.
* Degree centrality tells us about how many edges are incident on a node in each node/ vertex set.
*What about the overlap in ties?
* In other words, do nodes in N tend to "share" nodes in M ?
* This is the notion of clustering in a graph.

Dyadic Clustering: Bipartite Graphs

* In a bipartite graph, there are two interesting structures:
* 3-paths (sometimes called L_{3}) and cycles (sometimes called C_{4}).

Dyadic Clustering: Bipartite Graphs

* In a bipartite graph, there are two interesting structures:
* 3-paths (sometimes called L_{3}) and cycles (sometimes called C_{4}).

3-path

1-A-2-B

Dyadic Clustering: Bipartite Graphs

* In a bipartite graph, there are two interesting structures:
* 3-paths (sometimes called L_{3}) and cycles (sometimes called C_{4}).

cycle

1-A-2-B-1

Dyadic Clustering: Bipartite Graphs

* In a bipartite graph, there are two interesting structures:
* 3-paths (sometimes called L_{3}) and cycles (sometimes called C_{4}).

3-path

cycle

Dyadic Clustering: Bipartite Graphs

* Cycles in a graph create multiple ties between vertices in both modes.

A and B are both linked
through
1 and 2

Dyadic Clustering: Bipartite Graphs

* Cycles in a graph create multiple ties between vertices in both modes.

A and B are both
linked
through
1 and 2

1 and 2 are both
linked
through
A and B

Dyadic Clustering: Bipartite Graphs

- The ratio of cycles to 3-paths in a graph is proportional to the level of dyadic clustering (sometimes called reinforcement).
* A value of 1 indicates that every 3-path is closed (i.e., is embedded in a cycle).
* Networks with values at or close to 1 will have considerable redundancy in ties.

Dyadic Clustering: Bipartite Graphs

* Specifically, the dyadic clustering coefficient is the ratio of cycles X 4, divided by the number of 3-paths.

$$
\frac{4 \times C_{4}}{L_{3}}
$$

Dyadic Clustering: Bipartite Graphs

* In a cycle, there are four 3-paths.

Dyadic Clustering: Bipartite Graphs

* In a cycle, there are four 3-paths.

Dyadic Clustering: Bipartite Graphs

* In a cycle, there are four 3-paths.

Example

What is the
dyadic clustering for this graph?

Example

What is the
dyadic clustering for this graph?

$$
0.307
$$

Example

What is the dyadic clustering for this graph?

$$
0.307
$$

What does a value of 0.307 mean?

Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How are bipartite graphs different from unipartite graphs?
- What are some structural properties of bipartite graphs that we can examine?

Questions?

