Statistical Analysis of Networks

Projection & Weighted Graphs

Motivating Example Revisited

Diffusion of Ideas and Technology: The Role of Networks in Influencing the Endorsement and Use of On-Officer Video Cameras

Journal of Contemporary Criminal Justice 2015, Vol. 31 (3) 243-261 © 2014 SAGE Publications Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1043986214553380 ccj.sagepub.com

Jacob T. N. Young¹ and Justin T. Ready¹

- * <u>Questions</u>:
 - * How do police officers "frame" body-worn cameras?
 - * Is the meaning officers attribute to cameras created and transmitted in groups?

What is the **concept** of interest?

How is it **conceptualized**?

How is it **operationalized**?

Two-mode network of officers connected by incidents

One-mode network of officers connected to officers

What do the connections represent in this network?

Figure 5. One-mode network of officers.

Note. Node size is proportional to change in legitimacy: darker = more negative; white = no change. Line size is proportional to number of shared incidents.

Findings: Officers views of cameras changed based on who they interacted with through the network

Figure 5. One-mode network of officers.

Note. Node size is proportional to change in legitimacy: darker = more negative; white = no change. Line size is proportional to number of shared incidents.

Statistical Analysis of Networks

Projection & Weighted Graphs

Learning Goals

- At the end of the lecture, you should be able to answer these questions:
 - * How can we create **unipartite** graphs from **bipartite** graphs?
 - What is the difference between dichotomized projections and summation projections?

- The process by which we map the connectivity between modes to a single mode.
 - * <u>Example</u>
 - * Two-mode network is people in groups.
 - * By projecting, we get:
 - One-mode network of people connected to people by groups.
 - * One-mode network of groups connected *by* people.

Projection

- * <u>Breiger (1974)</u>
 - * We can build the adjacency matrix for each projected network through matrix algebra.
 - Specifically, multiplying an adjacency matrix by it's transpose.
 - The transpose of a matrix simply reverses the columns and rows:

•
$$A^{T_{ij}} = A_{ji}$$

* <u>Breiger (1974)</u>

- * The two-mode, *NxM*, adjacency matrix, when multiplied by it's **transpose**, produces either:
 - * An *MxM* matrix (ties among *M* nodes via *N*).
 - * An *NxN* matrix (ties among *N* nodes via *M*).

Transposition

Matrix A

Matrix AT

	1	2	3	4	5
А	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
Е	0	0	1	0	0
F	0	0	1	0	1

С Е D F В А

order is 6x5

order is 5x6

- Matrix Multiplication Rules
 - * To multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix.
 - * Example: 5x6 X 6x5 works, but not 5x6 X 5x6
 - The product matrix has the number of rows equal to the first matrix and the number of columns equal to the second matrix.
 - * Example: 5x6 X 6x5 = 5x5

Projection

- * Product Matrix
 - * The product matrix is the projected graph.
 - * Recall that there are two:
 - * A X A^t (the "people" matrix P)
 - * And the $A^t X A$ (the "group" matrix G)
 - * What does each one mean?

Matrix Multiplication

Matrix A

	1	2	3	4	5
А	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
E	0	0	1	0	0
F	0	0	1	0	1

order is 6x5

Matrix Multiplication

Matrix AT

	1	2	3	4	5	
А	1	1	0	0	0	
В	1	0	0	0	0	
С	1	1	0	0	0	X
D	0	1	1	1	1	
E	0	0	1	0	0	
F	0	0	1	0	1	

	А	В	С	D	E	F
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	0	0	0	1	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1

order is 6x5

order is 5x6

Matrix Multiplication

	N	<i>A</i> atri	X A						Mat	rix /	A T		
	1	2	3	4	5			Α	В	С	D	E	
А	1	1	0	0	0		1	1	1	1	0	0	
В	1	0	0	0	0		2	1	0	1	1	0	
С	1	1	0	0	0	X	-		0			-	
D	0	1	1	1	1		3	0	U	U			
E	0	0	1	0	0		4	0	0	0	1	0	
F	0	0	1	0	1		5	0	0	0	1	0	

order is 6x5

order is 5x6

F

0

0

1

0

1

The product matrix is 6x6

Projection by Multiplication

$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	E	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

6x5 X 5x6 = 6x6

Projection by Multiplication

We want to know how people are connected by groups (i.e. the rows of our two-mode adjacency matrix)

$\mathbf{A}\times\mathbf{A}^{\mathsf{T}}=\mathbf{P}$

6x5 X 5x6 = 6x6

$\mathbf{A}\times\mathbf{A}^{\mathsf{T}}=\mathbf{P}$

	А	В	С	D	E	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The diagonal is the count of ties **the person** has with two-mode vertices

For example, D is in 4 groups

6x5 X 5x6 = 6x6

$\mathbf{A}\times\mathbf{A}^{\mathsf{T}}=\mathbf{P}$

	А	В	С	D	E	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

What statistic does the diagonal give us?

6x5 X 5x6 = 6x6

$\mathbf{A}\times\mathbf{A}^{\mathsf{T}}=\mathbf{P}$

	А	В	С	D	E	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

Note, that the projection forces the product matrix to be symmetric (i.e. undirected graph)

6x5 X 5x6 = 6x6

$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the first mode are connected by vertices in the second mode

A and B are linked through a single vertex, 1

6x5 X 5x6 = 6x6

$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

A and C are linked through two vertices,1 and 2

So, if these are groups, A and C are members of 2 of the same groups

$$6x5 X 5x6 = 6x6$$

$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

NOTE: these are counts of shared vertices, not edge counts

6x5 X 5x6 = 6x6

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

Projection by Multiplication

We want to know how groups are connected by people (i.e. the columns of our two-mode adjacency matrix)

$\mathbf{A}^\mathsf{T} \times \mathbf{A} = \mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

 $5x6 \times 6x5 = 5x5$

$\mathbf{A}^{\mathsf{T}} \times \mathbf{A} = \mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The diagonal is the count of ties the **group** has with two-mode vertices

For example, 2 has 3 people

 $5x6 \times 6x5 = 5x5$

$\mathbf{A}^\mathsf{T} \times \mathbf{A} = \mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

What statistic does the diagonal give us?

 $5x6 \times 6x5 = 5x5$

$\mathbf{A}^{\mathsf{T}} \times \mathbf{A} = \mathbf{G}$

			and the state of the second		
	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

Note, that the projection forces the product matrix to be symmetric (i.e. undirected graph)

 $5x6 \times 6x5 = 5x5$

$\mathbf{A}^{\mathsf{T}} \times \mathbf{A} = \mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the second mode are connected by vertices in the first mode

> 1 and 2 are connected by 2 vertices, A and C

 $5x6 \times 6x5 = 5x5$

$\mathbf{A}^\mathsf{T} \times \mathbf{A} = \mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

NOTE: these are counts of shared vertices, not edge counts

 $5x6 \times 6x5 = 5x5$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

- * <u>To project, or not to project</u>?
 - As noted by many scholars, there is data loss when we project and binarize the data.
 - * Sometimes, this can be misleading.

Projection and Data Loss

Are these bipartite graphs the same?

Projection and Data Loss

Projection and Data Loss

- * <u>So what do we do</u>?
 - * When you can, "keep it real" by keeping it two-mode.
 - If you must project, minimize data loss by weighting edges.

Weighted Edges

- * We can use the information from the bipartite graph to weight the edges in the network.
- These weights can be used in a plot and / or in the analysis.
 - The most common method is to sum the ties between two actors (i.e. *summation method*).

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries are the tie weights

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

The weight corresponds to the number of nodes in the second mode that the two actors share in the bipartite graph.

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

The weight corresponds to the number of nodes in the second mode that the two actors share in the bipartite graph.

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	E	F
A	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

These weights are returned as the product matrix.

Learning Goals

- At the end of the lecture, you should be able to answer these questions:
 - * How can we create **unipartite** graphs from **bipartite** graphs?
 - What is the difference between dichotomized projections and summation projections?

