Statistical Analysis of Networks

Projection \& Weighted Graphs

Motivating Example Revisited

Diffusion of Ideas and Technology: The Role of Networks in Influencing the Endorsement and Use of On-Officer Video Cameras

Jacob T. N. Young' and Justin T. Ready'

* Questions:
* How do police officers "frame" body-worn cameras?
* Is the meaning officers attribute to cameras created and transmitted in groups?

What is the concept of interest?
 How is it conceptualized?

How is it operationalized?

Two-mode network of officers connected by incidents

What do the

 connections represent in this network?Figure 5. One-mode network of officers.
Note. Node size is proportional to change in legitimacy: darker = more negative; white $=$ no change. Line size is proportional to number of shared incidents.

Findings: Officers views of cameras changed based on who they interacted with
 through the network

Figure 5. One-mode network of officers.
Note. Node size is proportional to change in legitimacy: darker = more negative; white $=$ no change. Line size is proportional to number of shared incidents.

Statistical Analysis of Networks

Projection \& Weighted Graphs

Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How can we create unipartite graphs from bipartite graphs?
* What is the difference between dichotomized projections and summation projections?

Projection

* The process by which we map the connectivity between modes to a single mode.
* Example
* Two-mode network is people in groups.
* By projecting, we get:
* One-mode network of people connected to people by groups.
* One-mode network of groups connected by people.

Projection

* Breiger (1974)
* We can build the adjacency matrix for each projected network through matrix algebra.
* Specifically, multiplying an adjacency matrix by it's transpose.
* The transpose of a matrix simply reverses the columns and rows:
* $\mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}$

Projection

* Breiger (1974)
* The two-mode, $N x M$, adjacency matrix, when multiplied by it's transpose, produces either:
* An $M x M$ matrix (ties among M nodes via N).
* An $N x N$ matrix (ties among N nodes via M).

Transposition

Matrix A

	1	2	3	4	5
A	1	1	0	0	0
B	1	0	0	0	0
C	1	1	0	0	0
D	0	1	1	1	1
E	0	0	1	0	0
F	0	0	1	0	1

order is 6×5

Matrix $\mathbf{A}^{\boldsymbol{\top}}$

	A	B	C	D	E	F
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	0	0	0	1	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1

order is 5×6

Projection

* Matrix Multiplication Rules
* To multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix.
* Example: 5x6 X 6×5 works, but not 5×6 X 5x6
- The product matrix has the number of rows equal to the first matrix and the number of columns equal to the second matrix.
* Example: 5x6 X 6x5 $=5 \times 5$

Projection

* Product Matrix
* The product matrix is the projected graph.
* Recall that there are two:
* A X A ${ }^{t}$ (the "people" matrix \mathbf{P})
* And the A^{t} X A (the "group" matrix G)
-What does each one mean?

Matrix Multiplication

Matrix A

	1	2	3	4	5
A	1	1	0	0	0
B	1	0	0	0	0
C	1	1	0	0	0
D	0	1	1	1	1
E	0	0	1	0	0
F	0	0	1	0	1

order is $6 x 5$

Matrix Multiplication

Matrix A
Matrix $\mathbf{A}^{\boldsymbol{T}}$

X| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 1 | 1 | 0 | 0 |
| 3 | 0 | 0 | 0 | 1 | 1 | 1 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 1 |

order is 6×5
order is 5×6

Matrix Multiplication

Matrix A
Matrix $\mathbf{A}^{\boldsymbol{T}}$

X| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 1 | 1 | 0 | 0 |
| 3 | 0 | 0 | 0 | 1 | 1 | 1 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 1 |

order is 5×6

The product matrix is 6×6

Projection by Multiplication

$\mathbf{A} \times \mathbf{A}^{\boldsymbol{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

$6 x 5 \times 5 \times 6=6 \times 6$

Projection by Multiplication

We want to know how people are connected by groups (i.e. the rows of our two-mode adjacency matrix)

$$
\mathbf{A} \times \mathbf{A}^{\top}=\mathbf{P}
$$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

$$
6 \times 5 \times 5 \times 6=6 \times 6
$$

$\mathbf{A} \times \mathbf{A}^{\top}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The diagonal is the count of ties the person has with two-mode vertices

For example, D is in 4 groups

$$
6 \times 5 \times 5 \times 6=6 \times 6
$$

$\mathbf{A} \times \mathbf{A}^{\top}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

What statistic does the diagonal give us?
$6 \times 5 \times 5 \times 6=6 \times 6$

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

Note, that the projection forces the product matrix to be symmetric
(i.e. undirected graph)
$6 x 5 \times 5 \times 6=6 \times 6$

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the first mode are connected by vertices in the second mode
A and B are linked through a single vertex, 1

$$
6 \times 5 \times 5 \times 6=6 \times 6
$$

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

A and C are linked through two vertices, 1 and 2

So, if these are groups, A and C are members of 2 of the same groups

$6 x 5 \times 5 \times 6=6 \times 6$

$\mathbf{A} \times \mathbf{A}^{\boldsymbol{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

NOTE: these are counts of shared vertices, not edge counts

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

	A	B	C	D	E	F		A	B	C	D	E	F
A	2	1	2	1	0	0	A	0	1	1	1	0	0
B	1	1	1	0	0	0	B	1	0	1	0	0	0
C	2	1	2	1	0	0	C	1	1	0	1	0	0
D	1	0	1	4	1	2	D	1	0	1	0	1	1
E	0	0	0	1	1	1	E	0	0	0	1	0	1
F	0	0	0	2	1	2	F	0	0	0	1	1	0

If we treat any tie greater than 0 as binary, called dichotomizing, and recode the diagonal as 0 , we get an undirected, one-mode network

	A	B	C	D	E	F		A	B	C	D	E	F
A	2	1	2	1	0	0	A	0	1	1	1	0	0
B	1	1	1	0	0	0	B	1	0	1	0	0	0
C	2	1	2	1	0	0	C	1	1	0	1	0	0
D	1	0	1	4	1	2	D	1	0	1	0	1	1
E	0	0	0	1	1	1	E	0	0	0	1	0	1
F	0	0	0	2	1	2	F	0	0	0	1	1	0

If we treat any tie greater than 0 as binary, called dichotomizing, and recode the diagonal as 0 , we get an undirected, one-mode network

Projection by Multiplication

We want to know how groups are connected by people
(i.e. the columns of our two-mode adjacency matrix)

$$
\mathbf{A}^{\boldsymbol{\top}} \times \mathbf{A}=\mathbf{G}
$$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

$5 \times 6 \times 6 \times 5=5 \times 5$

$\mathbf{A}^{\top} \times \mathbf{A}=\mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The diagonal is the count of ties the group has with two-mode vertices

For example, 2 has 3 people
$5 \times 6 \times 6 \times 5=5 \times 5$

$\mathbf{A}^{\top} \times \mathbf{A}=\mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

What statistic does the diagonal give us?
$5 \times 6 \times 6 \times 5=5 \times 5$

$\mathbf{A}^{\boldsymbol{T}} \times \mathbf{A}=\mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

Note, that the projection forces the product matrix to be symmetric
(i.e. undirected graph)
$5 \times 6 \times 6 \times 5=5 \times 5$

$\mathbf{A}^{\top} \times \mathbf{A}=\mathbf{G}$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the second mode are connected by vertices in the first mode

1 and 2 are connected by 2 vertices, A and C
$5 \times 6 \times 6 \times 5=5 \times 5$

$$
\mathbf{A}^{\top} \times \mathbf{A}=\mathbf{G}
$$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

NOTE: these are counts of shared vertices, not edge counts
$5 \times 6 \times 6 \times 5=5 \times 5$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, called dichotomizing, and recode the diagonal as 0 , we get an undirected, one-mode network

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, called dichotomizing, and recode the diagonal as 0 , we get an undirected, one-mode network

Projection

* To project, or not to project?
* As noted by many scholars, there is data loss when we project and binarize the data.
- Sometimes, this can be misleading.

Projection and Data Loss

Are these bipartite graphs the same?

Projection and Data Loss

Their binary projection sure is!

Projection and Data Loss

What information is lost in the projection?

Projection

* So what do we do?
* When you can, "keep it real" by keeping it two-mode.
* If you must project, minimize data loss by weighting edges.

Weighted Edges

* We can use the information from the bipartite graph to weight the edges in the network.
* These weights can be used in a plot and / or in the analysis.
* The most common method is to sum the ties between two actors (i.e. summation method).

Projection

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2		2

If we treat any tie greater than 0 as binary, called dichotomizing, and recuae the diagonal as 0 , we get an undirested, one-mude network

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries are the tie weights

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

$\mathbf{A} \times \mathbf{A}^{\mathbf{T}}=\mathbf{P}$

	A	B	C	D	E	F
A	2	1	2	1	0	0
B	1	1	1	0	0	0
C	2	1	2	1	0	0
D	1	0	1	4	1	2
E	0	0	0	1	1	1
F	0	0	0	2	1	2

These weights are returned as the product matrix.

Learning Goals

* At the end of the lecture, you should be able to answer these questions:
* How can we create unipartite graphs from bipartite graphs?
* What is the difference between dichotomized projections and summation projections?

Questions?

